Seed Basics Botany and Biology

Russell T. Nagata

College of Tropical Agri. and Human Resources

Komohana Research and Education Center

Hilo, Hawaii

russelln@hawaii.edu

Hawai'i Public Seed Initiative Seed Saving and Production Basics

Monocots and Dicots

- Major division in plant biology
 - Angiosperm
- Difference in plant growth pattern
- Difference in seed germination

Monocots

- one cotyledon in seed
- > include all grasses
- parallel veins
- bundled vascular strands scattered
- > flower petals number 1, 3 and 6
- secondary growth absent

Monocots

Hawai'i Public Seed Initiative Seed Saving and Production Basics

Monocot Seed

UNIVERSITY of HAWAI'I®

MĀNOA

Hawai'i Public Seed Initiative Seed Saving and Production Basics

Dicots

- > two cotyledons in seed
- major veins netted
- flower petals number 4, 5 and many
- secondary stem growth
- > vascular bundle in ring

Dicot Characteristics

Dicot Seed

Dicot Seed

Dicot Seed

Hawai'i Public Seed Initiative Seed Saving and Production Basics

Comparison

- One cotyledon
- ➤ Petals multiple of 3
- No secondary stem growth
- > Parallel major veins
- Vascular bundle scattered

- > Two cotyledon
- > 4 or 5 petals
- Secondary stem growth
- **➤ Net like major veins**
- Vascular bundle in ring

Seed Types

- > OP or Open Pollinated Variety
- > Hybrid Variety
- Heirloom Variety

Open Pollinated Variety

- allowed to "randomly mate"
- variation in plant types are normal
- good for self saving seeds
- > genetic drift constant issue
- > seeds generally low cost
- includes most heirloom varieties

Heirloom Variety

- normally 2 to 3 generations or 60 years of planting history
- began in an person's garden or small farm
- has local or regional adaption
- has one or more outstanding characteristics
- possible to self save seeds

Hybrid Variety

- > created by control crossing of two plants
- anthers emasculated by hand or physiologically, or by incompatibility
- > plant vigor often associated with hybrids
- difficult to create hybrid seeds in home garden
- usually most expensive seeds
- cannot self save seed

Mating Preferences

- > Self Pollinators
- > Out Crossers

Self Pollinators

- > Self Compatible
- Floral Morphology
 - enclose reproductive structures
 - > tubes
 - pollination prior to flower opening
 - flower positioned to favor self pollination
- Tomato, Snap Beans, Lettuce

- Wind Pollinated
 - light, loose pollen
 - > dependent on wind direction

- Wind Pollinated
- Insect Pollinated
 - availability of pollinators
 - pollinator preference
 - greenhouse production conditional

- Wind Pollinated
- Insect Pollinated
- Vertebrate Pollinated
 - birds, mammals

- Wind Pollinated
- Insect Pollinated
- Vertebrate Pollinated
- Self Incompatibility
 - Chemical Recognition
 - Pollen and seed compatibility
 - > Eg. Cabbage, Onions, Radish

- Wind Pollinated
- Insect Pollinated
- Vertebrate Pollinated
- > Self Incompatibility
- > Floral Biology

Floral Biology

- Monoecious
 - > one plant with male and female flowers
- Dioecious
 - > separate male and female flower plants
- Receptivity
 - pollen shed and stigma receptivity not synchronized

UNIVERSITY of HAWAI'I®

MĀNOA

Hawai'i Public Seed Initiative Seed Saving and Production Basics

- Wind Pollinated
- Insect Pollinated
- Vertebrate Pollinated
- Self Incompatibility
- > Floral Structure Dependent
- Hybrid Vigor

- Wind Pollinated
- Insect Pollinated
- Vertebrate Pollinated
- > Self Incompatibility
- Floral Structure Dependent
- Hybrid Vigor
- Inbreeding Depression Possible
 - reduced plant vigor

Pollen Transfer

- > Wind
 - direction important in small plots
 - loose pollen grains

Pollen Transfer

- > Wind
- Insects and Animals
 - Sticky Pollen Grains
 - Packaged Pollen Grains
 - Bees and Wasps
 - Beetles
 - > Flies
 - Butterflies and Moths

Pollen Transfer

- > Wind
- Insects and Animals
- > Humans
 - Lack of Natural Pollinators
 - New Character Combinations
 - Variety Purity

Reproductive Cycles

- > Annuals
- Biennial
- Perennial

Annuals

- Seed to Seed in One Growing Season
- Herbaceous
- > Bean, pea, corn, lettuce, cucurbits

Biennials

- Require Two Growing Seasons
 - seed to seed
- Need Dormancy or Photoperiod
- cabbage, beets, carrots, collards, kale

Perennials

- Grow Many Years
- Many Seed Cycles
- Many Are Woody Plants
- coconut, avocado, etc.

Strategies on Saving Seeds

- What is the best source
- Genetic diversity
- Seed purity and rouging
- Selection criteria
- Isolation distances

What to Save From?

- > Heirlooms
- Self Pollinated Crops
- > Annuals
- Open Pollinated Varieties
- **▶** No Hybrids Unless...

- How Many Plants to Keep
 - Mating Biology
 - Genetic Drift
 - Available Space
 - More Plants or More Seeds
 - Seed Yield Ratio
 - Seed Quantity Needed

- How Many Plants to Keep
- > Plant Selection
 - Reason For Selection
 - Eliminated Undesirables
 - Move in New Direction
 - New Possibility

- How Many Plants to Keep
- Plant Selection
- Population Makeup
 - Population Uniformity
 - Narrow Genetic Base
 - Open Pollinated

- How Many Plants to Keep
- > Plant Selection
- Population Makeup
- > Pollination Biology
 - mating behavior
 - pollen transfer

- Dependent on Starting Material
 - What are your objectives?

- Dependent on Starting Material
- Selection and Rouging Procedures

- Dependent on Starting Material
- Selection and Rouging Procedures
- Cleanliness

- Dependent on Starting Material
- Selection and Rouging Procedures
- Cleanliness
- Proper Labeling Seed to Seed
 - Variety Name
 - Common or Scientific Name
 - > Date

- Dependent on Starting Material
- Selection and Rouging Procedures
- Cleanliness
- Proper Labeling Seed to Seed
- Seed Saving Goals and Objectives

- Dependent on Starting Material
- Selection and Rouging Procedures
- Cleanliness
- Proper Labeling Seed to Seed
- Seed Saving Goals and Objectives
- Pollen Flow Control
 - Start to Finish

Isolation Distances

- Crop Specific
 - Pollination Biology
 - Self Pollination
 - Cleistogamy
 - Wind Pollinated
 - Insect Pollinated
 - Animal Pollinated

Isolation Distances

- > Crop Specific
- Location Specific
 - In Geographic Space
 - > In Time
 - Exclusion of Pollinators

